Comet Interceptor (ESA-JAXA) and EnVision (ESA-NASA): new missions, new science

L.M. Lara, P. J. Gutiérrez, F. Álvarez, J.M. Castro-Marín, Antonio J. García Segura, F. Girela,, J. Jiménez-Ortega, I. M. Navajas

IAA-CSIC

It's time to explore VenusEnVision (ESA)VERITAS (NASA)

- 5th mission in the M-class programme of ESA's scientific programme.
- Exploration of planet Venus from the interior to the upper layers of the atmosphere.
- Instrumentation carefully selected to address:
 - Why the Earth and Venus followed such a different evolutionary paths?
 - Is Venus still geologically active?
 - Past conditions related to hosting life (ocean?)
 - Context for other planetary systems with terrestrial planets in them.

- Explore the interior and surface of the planet to
 - Determine the composition and origin of the terrains,
 - Ascertain the nature of volcanism (steady or catastrophic),
 - Measure the tectonics, size and state of the core,
 - Know if there are tectonic processes,
 - Detect hints of volcanism, etc

EnVision (ESA)

- Launch by Ariane 6.
- First window in 2031, with other possible options in 2032 and 2033.
- 15 months to reach the planet -> 16 months to achieve orbit circularisation through aerobraking.
- 92-mins orbit, quasi-polar with an altitude of between 220 km and 540 km.

- VenSAR (30 m/pix and 10 m/pix)
- SAR: first instrument to probe the subsurface of Venus mapping its vertical structure
- Radio Science Experiment and radio occultation experiment.
- VenSpec suite: spectrometers in UV (VenSpec-U, gas and particulate absorber at the cloud tops) and IR (VenSpec-H, nadir viewing, night and day-side observations), and a spectrometer-IR mapper (VenSpec-M) enabled to study the water vapour in the atmosphere.

VenSpec suite Complex set of 3 complex instruments

Power supply unit for VenSpec CCU (Central Control Unit), VenSpec-H and VenSpec-U are detailed by Jaime Jiménez et al.

VenSpec-M

VenSpec-H

It's time to catch a pristine comet or an interstellar planetesimal

- **Comet Interceptor** is a mission proposed to ESA in response to its July 2018 F-class call for modest-sized missions.
- Maximum cost to ESA at completion: €150M, but launch cost and science instruments not included in this sum.
- Constraints: 850-900kg maximum wet mass; launch in 2029 with the Ariel exoplanet observatory mission; delivery to Sun-Earth L2.
- All previous comet missions have been to objects that have passed the Sun many times.
- Targets were relatively evolved, with thick dust mantles.
- A dynamically-new comet (DNC) is one that is probably nearing the Sun for the first time.
- A mission to a DNC would encounter a pristine comet, with surface ices as first laid down at the Solar System's formation.
- An interstellar visitor is not ruled out.

Mission Profile

- Mission 'parked' at L2 after launch with Ariel, waits for new target discovery by Vera Rubin Telescope or other ground-based survey (2-3 years)
- Short cruise and fast flyby near 1 AU
- Mothership with remote sensing payload, distant 'safe' flyby (few 1000km)
- Released subspacecraft take instruments on different trajectories through coma, including much closer to nucleus

Mission Phases

- Launch & delivery to L2
- II Station-keeping at L2
- III Departure from L2
- IV Cruise and instrument commissioning

Separation of spacecraft elements Target Encounter Data playback and solar wind studies, if possible

Not to scale

New Science

Multi-point measurements of cometary environment, including plasma: separation of spatial and temporal effects.

- Energetic Neutral Atoms: first observations of solar wind-neutral charge exchange processes at a comet
- Multiple views of cometary nucleus: views from three spacecraft reveal 3D structure of nucleus and coma from a single flyby
- Entire Visible Sky: EnVisS
- Panchromatic and polarimetric mapper
- All-sky view of dust, including polarimetry.

Spacecraft	Instrument	Description
A ESA	CoCa	Visible/NIR Imager
	MANIaC	Mass spectrometer
	MIRMIS	Thermal IR spectral imager
	DFP	Dust, Fields and Plasma
B2 ESA		(similar in A and B2)
	EnVisS	All-sky visible imager and polarimeter
	OPIC	Visible/NIR Imager
B1 JAXA	Н	Lyman-alpha Hydrogen imager
	PS	Plasma Suite
	WAC	Wide Angle Camera

CoCa (Comet Camera) led by CH with contributions from BE, DE, ES and HU

Instrument pixel scale	8 µrad/px
Field of View	0.69° x 0.92°
Detector	CIS115 Back-side illuminated CMOS image sensor
Pixels	1504 x 2000
Pixel size	7 x 7 um
Exposure times	220 µs (fly-by) to 15 min (identification), rolling shutter
Imaging rate multi-colour	≥ 1 frame per second
Imaging rate single colour	≥ 2 frames per second
Filters	475 nm (Δλ=150 nm) BLU
	675 nm (Δλ=100 nm) ORG
	775 nm (Δλ=100 nm) RED
	900 nm (Δλ=150 nm) NIR
Mass	13.5 kg (3 units)
Power	19 W average
Volume	CSU: 350 x 460 x 550 mm ³ ; PEU: 210 x 160 x 70 mm ³ ; ELU: 120 x
	240 x 180 mm ³
Data I/F	Spacewire
Instrument memory (holding	2 x 128Gbit
science data)	
Max data volume	128Gbit uncompressed

Sensor Head Unit (SHU)

MANiaC led by CH with contributions from AU, ES, FR and PL

SHU and the NDG contain antechambers for the thermalization of the incoming gas.

NDG: density range of 10^{-6} to 10^{-14} mbar SHU is designed for a mass resolution of m/ Δ m > 800 for mass/charge > 40 Da/e-

Wavelength coverage	550-800 nm 1 broad band filter (B) and 2 polarimetric filters (P1 and P2)
Instrument FoV	180°x45° (fixed) 180°x360° (dynamic)
Entrance aperture (F#)	1.23 mm (2.8)
Detector	CMOS 2kx2k 5.5-micron px size
Scale factor	0.1°/px
MTF	>70% @ 45 lp/mm
Distortion and telecentricity	<8% (f-theta distortion law) and <4° (at the FoV edges)

EnVisS (Entire Visible Sky) led by IT with PSU and DHU (shared with OPIC) from ES

OPIC (Optical Periscope Imager for Comets) led by EE with contributions from ES (DHU shared with EnVisS) and FI

Polarimetry of Comets

EnVisS: All-sky polarization curve

For scattered light from irregular dust aggregates,

The authors acknowledge financial support from the State Agency for Research of the Spanish MCIU through the 'Centre of Excellence Severo Ochoa' award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709), the project PGC2018-099425-B-I00 (MCI/AEI/FEDER, UE) and ESA Contract No. 4000131120/20/NL/IB/ig

