Applications of HARMONI's pointing model

Using prior information to speed up calibrations

Durham

University

Gonzalo José Carracedo Carballal (CAB CSIC-INTA) Javier Piqueras López (CAB CSIC-INTA)

Introduction

- HARMONI: Challenging angular resolution
 - ~10 mas FWHM (AO)
- Challenging positioning accuracy
 - 13 μ m pixels \rightarrow 4 mas/pixel (Nyquist sampling)
- Instrument as-is: pointing error
 - **Pointing model** (for static contributions)
- The problem:
 - What does this model look like? How good is it? How do we fit it?
 - Is our knowledge of the instrument enough?
- The approach
 - An evolvable pointing simulator architecture: harmoni-pm (https://github.com/BatchDrake/harmoni-pm)

Pointing with HARMONI

- Telescope's focal plane is relayed to another 1:1 plane by means of FPRS optics
- Pick-Off Arm: measure position of stars in the relayed plane

Pointing model in a nutshell

- Transform focal points into relayed points (search)
- Transform relayed points into focal points (error measurement)

GCU and calibration mask

 Present well-known bright points into the focal plane to measure instrumental pointing errors

Pointing model formulation

- Linear combination of complex Zernike polynomials
 - **Standard** (well documented)
 - Orthogonal (absence of information overlap)
 - Meaningful (each polynomial has physical interpretation)
- Can be related to the Fourier series

Results: minimum model complexity

Error after model (J = 10)

ius"]

encor

enco

encor

ncor

Co

7 / 13

Results: calibration patterns

 Calibrating J = N = 10 with a spiral pattern produces undersampled regions in the relayed plane

Results: calibration patterns

 Calibrating J = N = 10 with a concentrical pattern results in a more evenly-distributed sampling of the pointing errors

The Bayesian calibration problem

- Original formulation:
 - This is my set (N ≥ J) of measured calibration points.
 What is the set of model coefficients that minimizes the residual?
- Bayesian formulation:
 - This is my set (N > 0) of measured calibration points, affected by measurement noise.
 - This is my set of prior probability distributions of the model coefficients.
 - How are these distributions **updated** by the noisy measurements?

Optimizing the problem

- Joint distributions of more than 3 variables are hard
- We have **20** variables (2 times 10)
 - Multivariate Gaussian: 20 means, ~200 d.o.f in the cov. matrix
- Statistical independence \rightarrow **separability** (20 variables, ~20 variances)

The calibration procedure

Conclusions

- harmoni-pm enables corrected and uncorrected pointing error simulations, while providing a highly flexible and extensible architecture
- harmoni-pm has proved to be a useful tool in constraining the pointing model complexity and optimizing the calibration strategy
- The Bayesian formulation allows to update the model with very reduced sets of calibration points, thus speeding up the calibration process