

Superconducting resonators for space and quantum applications

Alicia Gómez

Centro de Astrobiología (CSIC-INTA)

agomez@cab.inta-csic.es

21th April 2022

We are a team

EXCELENCIA SEVERO OCHOA 2017-2021

dea

ociencia

Jesús Martin-Pintado

Enrique Villa

Daniel Granados

NIVERSIDA DICOM

EXCELENCIA MARÍA DE MAEZTU

Eduardo Artal

Beatriz Aja

Juan Pablo Pascual

Funding and support

Which property is it going to be measured?

Kinetic Inductance Detectors (KIDs)

KIDs superconducting detectors for future space instrumentation

- State-of-the-art sensitivity
- > Broad band detection
- > Intrinsically multiplexable
 - Easy cryogenic harness

KIDs for W-band

Cosmic Microwave Background (CMB)

Dark Matter experiments: axions detection

CADEX Collaboration

Kinetic Inductance Detectors (KIDs)

Day et al., Nature (2003)

7

Kinetic Inductance Detectors (KIDs)

Multiplexing \rightarrow 1 wire > 1000 LERs

1. Tuning operational frequency band: Superconducting Materials

2. Impedance Matching: quasi-optical design

Doyle et al., JLTP (2007)

Aja et al., IEEE TMTT (2021)

2. Impedance Matching: quasi-optical design

On chip polarimetry for W-band \rightarrow BiKID structure

DICOM

2. Impedance Matching: quasi-optical design

On chip polarimetry for W-band \rightarrow BiKID structure

CENTRO DE ASTROBIOLOGÍA · CAB ASOCIADO AL NASA ASTROBIOLOGY PROGRAM CSIC C

3. Cryogenic Characterization

He³/He⁴ Dilution Refrigerator

Microwave harness set-up

3. Cryogenic Characterization

Dark characterization

✓ High nanofabrication yield

CENTRO DE ASTROBIOLOGÍA · CAB Asociado al Nasa Astrobiology program CSIC C

3. Cryogenic Characterization

Low background optical characterization

3. Cryogenic Characterization

High background optical characterization \rightarrow In progress

Cryogenic Optical set-up development

3. Cryogenic Characterization

High background optical characterization \rightarrow In progress

- Cryogenic Optical set-up development
- > Development of W-band cryogenic absorbers (straylight radiation)

4. Increasing TRL → Future Space Applications

> Large format array cameras nanofabrication: Clean-room facilities adapted.

4 inch cameras with 1000 pixels \rightarrow Yield>90%

KIDs for W-band

4. Increasing TRL → Future Space Applications

KISS – QUIJOTE TELESCOPE (IAC)

Spectrometer 80-300 GHz

(1 GHz), FoV 1º

1020 KIDs @ 2 mm

1140 KIDs @ 1.15 mm x 2 polarizations

A. Fasano A&A (2021)

L. Perotto A&A (2020)

REQUIREMENTS

High sensitivity.

- > Large number of pixels.
- > Low power dissipation.

Quantum Key Distribution Applications

Graphene-based Single Nanowire

Single Photon Detectors

Quantum computing: quantum electrodynamics on a chip

Resonant cavity
PhotonQubit
Two level system

Resonant cavity \rightarrow Superconducting Resonator

- Multiple read-out with a single transmission line.
- High power pulses to implement gates.
- Photon-mediated interactions between different qubits.

LERs for Quantum Processors

de Madrid

Coupling to semiconducting nanowires: Gatemon Qubits

E. Prada, Nat. Rev. Phys. (2020)

Magnonic quantum systems: Magnetic vortices and FeB nanorods

Pepa Martínez-Pérez **iComp** Jesús Mª González

M.J. Martínez-Pérez, ACS Photonics (2019)

 \geq

CENTRO DE ASTROBIOLOGÍA CAB ASOCIADO AL NASA ASTROBIOLOGY PROGRA MARÍA DE MAEZTU

A. Endo (TU Deflt)

KIDs Visible/NIR

B. Mazin (UC Santa Barbara)

Superconducting quantum technologies

Detectors for quantum key distribution \succ

Superconducting resonators for space and quantum applications

Alicia Gómez

Centro de Astrobiología (CSIC-INTA)

agomez@cab.inta-csic.es

Thank you for your attention !!

